FP-tree and SVM for Malicious Web Campaign Detection
نویسندگان
چکیده
The classification of the massive amount of malicious software variants into families is a challenging problem faced by the the network community. In this paper (The work was supported by the EU FP7 grant No. 608522 (NECOMA) and "Information technologies: Research and their interdisciplinary applications", POKL.04.01.01-00-051/10-00.) we introduce a hybrid technique combining a frequent pattern mining and a classification technique to detect malicious campaigns. A novel approach to prepare malicious datasets containing URLs for training the supervised learning classification method is provided. We have investigated the performance of our system employing frequent pattern tree and Support Vector Machine on the real database consisting of malicious data taken from numerous devices located in many organizations and serviced by CERT Polska. The results of extensive experiments show the effectiveness and efficiency of our approach in detecting malicious web campaigns. Słowa kluczowe: malware campaign, url
منابع مشابه
Analyzing new features of infected web content in detection of malicious web pages
Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملTwo-Phase Malicious Web Page Detection Scheme Using Misuse and Anomaly Detection
Misuse detection method and anomaly detection method are widely used for the detection of malicious web pages. Both are based on machine learning. Misuse detection can detect known malicious web pages, but it cannot detect new ones. In contrast, anomaly detection can detect unknown malicious web pages, but it has a high false positive rate. In order to achieve a high detection rate through prec...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015